Correlation Engine 2.0
Clear Search sequence regions


mRNA regulation is essential in germ cells and early embryos. In particular, late oogenesis and early embryogenesis occur in the absence of transcription and rely on maternal mRNAs stored in oocytes. These maternal mRNAs subsequently undergo a general decay in embryos during the maternal-to-zygotic transition in which the control of development switches from the maternal to the zygotic genome. Regulation of mRNA stability thus plays a key role during these early stages of development and is tightly interconnected with translational regulation and mRNA localization. A common mechanism in these three types of regulation implicates variations in mRNA poly(A) tail length. Recent advances in the control of mRNA stability include the widespread and essential role of regulated deadenylation in early developmental processes, as well as the mechanisms regulating mRNA stability which involve RNA binding proteins, microRNAs and interplay between the two. Also emerging are the roles that other classes of small non-coding RNAs, endo-siRNAs and piRNAs play in the control of mRNA decay, including connections between the regulation of transposable elements and cellular mRNA regulation through the piRNA pathway. This article is part of a Special Issue entitled: RNA Decay mechanisms. Copyright © 2013 Elsevier B.V. All rights reserved.

Citation

Bridlin Barckmann, Martine Simonelig. Control of maternal mRNA stability in germ cells and early embryos. Biochimica et biophysica acta. 2013 Jun-Jul;1829(6-7):714-24

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23298642

View Full Text