Correlation Engine 2.0
Clear Search sequence regions


  • biomass (2)
  • fourier transform (1)
  • FUM1 (3)
  • fumarates (2)
  • fumaric acid (12)
  • gene (3)
  • petroleum (1)
  • SFC1 (1)
  • target gene (1)
  • Sizes of these terms reflect their relevance to your search.

    Fumaric acid (FA) is a promising biomass-derived building-block chemical. Bio-based FA production from renewable feedstock is a promising and sustainable alternative to petroleum-based chemical synthesis. Here we report on FA production by direct fermentation using metabolically engineered Saccharomyces cerevisiae with the aid of in silico analysis of a genome-scale metabolic model. First, FUM1 was selected as the target gene on the basis of extensive literature mining. Flux balance analysis (FBA) revealed that FUM1 deletion can lead to FA production and slightly lower growth of S. cerevisiae. The engineered S. cerevisiae strain obtained by deleting FUM1 can produce FA up to a concentration of 610±31 mg L(-1) without any apparent change in growth in fed-batch culture. FT-IR and (1)H and (13)C NMR spectra confirmed that FA was synthesized by the engineered S. cerevisiae strain. FBA identified pyruvate carboxylase as one of the factors limiting higher FA production. When the RoPYC gene was introduced, S. cerevisiae produced 1134±48 mg L(-1) FA. Furthermore, the final engineered S. cerevisiae strain was able to produce 1675±52 mg L(-1) FA in batch culture when the SFC1 gene encoding a succinate-fumarate transporter was introduced. These results demonstrate that the model shows great predictive capability for metabolic engineering. Moreover, FA production in S. cerevisiae can be efficiently developed with the aid of in silico metabolic engineering.

    Citation

    Guoqiang Xu, Wei Zou, Xiulai Chen, Nan Xu, Liming Liu, Jian Chen. Fumaric acid production in Saccharomyces cerevisiae by in silico aided metabolic engineering. PloS one. 2012;7(12):e52086

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 23300594

    View Full Text