Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Manganese (Mn) is an essential metal for biological systems; however, occupational or clinical exposure to high levels of Mn can produce a neurological disorder called manganism. Oxidative stress and neuroinflammation play major roles in the Mn-induced neurodegeneration leading to dysfunction of the basal ganglia. We investigated the toxic effects of MnCl2 in an immortalized rat brain endothelial cell line (RBE4) and the protective effects of the radical scavenging aminosalicylic acids, 5-aminosalicylic acid (5-ASA) and 4-aminosalicylic acid (4-PAS). Mn cytotoxicity was determined with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) reduction and lactate dehydrogenase (LDH) activity. A significant decrease in MTT reduction concomitant with increased LDH release was noted in RBE4 cells exposed for 24 h to MnCl2 (600 and 800 μM; p < 0.0001). Our results establish that compared to 4-PAS, 5-ASA has greater efficacy in protecting RBE4 cells from Mn-induced neurotoxicity after preexposure to MnCl2 800 μM (p < 0.0001).

Citation

Dinamene Santos, M Camila Batoreu, Michael Aschner, Ana P Marreilha dos Santos. Comparison between 5-aminosalicylic acid (5-ASA) and para-aminosalicylic acid (4-PAS) as potential protectors against Mn-induced neurotoxicity. Biological trace element research. 2013 Apr;152(1):113-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23315311

View Full Text