Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Microfluidics has emerged as a versatile technology that has found many applications, including DNA chips, fuel cells, and diagnostics. As the field of microfluidic diagnostics grows, it is important to introduce the principles of this technology to young students and the general public. The objective of this project was to create a simple and effective method that could be used to teach key microfluidics concepts using easily accessible materials. Similar to the poly(dimethylsiloxane) soft lithography technique, a Jell-O(®) "chip" is produced by pouring a mixture of Jell-O(®) and gelatine solution into a mold, which is constructed using foam plate, coffee stirrers, and double-sided tape. The plate is transferred to a 4°C refrigerator for curing, and then the Jell-O(®) chip is peeled off for experimental demonstrations. Three types of chips have been fabricated with different molds: a JELLO mold, a Y-channel mold, and a pH-sensor mold. Using these devices, the basics of microfluidic diagnostics can be demonstrated in one or two class periods. The method described in this chapter provides teachers with a fast and inexpensive way to introduce this technology, and students with a fun and hands-on way to understand the basics of microfluidic diagnostics.


Cheng Wei T Yang, Eric T Lagally. Teaching microfluidic diagnostics using Jell-O(®) chips. Methods in molecular biology (Clifton, N.J.). 2013;949:25-40

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23329433

View Full Text