Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In this work, we propose a solution-based carbon precursor coating and subsequent carbonization strategy to form a thin protective carbon layer on unstable semiconductor nanostructures as a solution to the commonly occurring photocorrosion problem of many semiconductors. A proof-of-concept is provided by using glucose as the carbon precursor to form a protective carbon coating onto cuprous oxide (Cu₂O) nanowire arrays which were synthesized from copper mesh. The carbon-layer-protected Cu₂O nanowire arrays exhibited remarkably improved photostability as well as considerably enhanced photocurrent density. The Cu₂O nanowire arrays coated with a carbon layer of 20 nm thickness were found to give an optimal water splitting performance, producing a photocurrent density of -3.95 mA cm⁻² and an optimal photocathode efficiency of 0.56% under illumination of AM 1.5G (100 mW cm⁻²). This is the highest value ever reported for a Cu₂O-based electrode coated with a metal/co-catalyst-free protective layer. The photostability, measured as the percentage of the photocurrent density at the end of 20 min measurement period relative to that at the beginning of the measurement, improved from 12.6% on the bare, nonprotected Cu₂O nanowire arrays to 80.7% on the continuous carbon coating protected ones, more than a 6-fold increase. We believe that the facile strategy presented in this work is a general approach that can address the stability issue of many nonstable photoelectrodes and thus has the potential to make a meaningful contribution in the general field of energy conversion.

Citation

Zhonghai Zhang, Rubal Dua, Lianbin Zhang, Haibo Zhu, Hongnan Zhang, Peng Wang. Carbon-layer-protected cuprous oxide nanowire arrays for efficient water reduction. ACS nano. 2013 Feb 26;7(2):1709-17

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23363436

View Full Text