Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Previous studies have indicated that the antimicrobial efficacy of endodontic irrigants may be diminished in the presence of patient tissues and fluids. With Streptococcus gordonii as a model microorganism, we used a genetic approach to investigate the hypothesis that bacterial surface proteins with collagen-binding abilities may function to protect biofilm cells from antiseptics commonly used in root canal treatment. S. gordonii strain DL1 or isogenic mutant strains with deletions of genes encoding collagen-binding surface proteins were grown in microtiter plates to form 8-hour biofilms. Planktonic cells were aspirated, and the remaining biofilm cells were buffer-washed and then incubated with either pH-adjusted buffer or potentially protective solutions of type I collagen, serum, or saliva. Biofilms were rewashed, pulsed with sodium hypochlorite, chlorhexidine digluconate, or BioPure MTAD, and then rewashed. Fresh medium was added, and survivor cell growth was monitored for 24 hours. Buffer-treated biofilm cells of all 3 strains were similarly killed by sodium hypochlorite, chlorhexidine digluconate, and MTAD. Collagen, serum, and saliva significantly protected strain DL1 from all 3 antiseptics compared with buffer-treated cells (P ≤ .0004). However, preincubation with collagen, serum, or saliva left both mutant strain biofilms significantly more susceptible to all 3 antiseptics than were respectively treated strain DL1 biofilms (P ≤ .005). Interactions of S. gordonii surface proteins with collagen or similar components in serum and saliva may play roles in protecting biofilm cells from endodontic antiseptics. Elucidating molecular mechanisms underlying bacterial resistance to antimicrobials may facilitate the development of more effective treatments. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

Citation

Timothy L Violante, Elaine M Haase, M Margaret Vickerman. Collagen-binding streptococcal surface proteins influence the susceptibility of biofilm cells to endodontic antimicrobial solutions. Journal of endodontics. 2013 Mar;39(3):370-4


PMID: 23402509

View Full Text