Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Mesenteric arteries and veins are densely innervated by sympathetic nerves and are crucial in the regulation of peripheral resistance and capacitance, respectively, thus, in the control of blood pressure. Presynaptic adenosine receptors are involved in vascular tonus regulation, by modulating noradrenaline release from vascular postganglionic sympathetic nerve endings. Some studies also suggest that adenosine receptors (AR) may have a role in hypertension. We aim at investigating the role of presynaptic adenosine receptors in mesenteric vessels and establish a relationship between their effects (in mesenteric vessels) and hypertension, using the spontaneously hypertensive rats (SHR) as a model of hypertension. Adenosine receptor-mediated modulation of noradrenaline release was investigated through the effects of selective agonists and antagonists on electrically-evoked [(3)H]-noradrenaline overflow. CPA (A1AR selective agonist: 1-100 nM) inhibited tritium overflow, but the inhibition was lower in SHR mesenteric vessels. IB-MECA (A3AR selective agonist: 1-100 nM) also inhibited tritium overflow but only in WKY mesenteric veins. CGS 21680 (A2AAR selective agonist: up to 100 nM) failed to facilitate noradrenaline release in mesenteric veins, from both strains, but induced a similar facilitation in the mesenteric arteries. NECA (non-selective AR agonist: 1, 3 and 10μM), in the presence of A1 (DPCPX, 20 nM) and A3 (MRS 1523, 1 μM) AR selective antagonists, failed to change tritium overflow. In summary, the modulatory effects mediated by presynaptic adenosine receptors were characterized, for the first time, in mesenteric vessels: a major inhibition exerted by the A1 subtype in both vessels; a slight inhibition mediated by A3 receptors in mesenteric vein; a facilitation mediated by A2A receptors only in mesenteric artery (from both strains). The less efficient prejunctional adenosine receptor mediated inhibitory effects can contribute to an increase of noradrenaline in the synaptic cleft (both in arteries and veins), which might conduce to increased vascular reactivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

Citation

C Rocha-Pereira, J B Sousa, M S Vieira-Rocha, P Fresco, J Gonçalves, C Diniz. Differential inhibition of noradrenaline release mediated by inhibitory A₁-adenosine receptors in the mesenteric vein and artery from normotensive and hypertensive rats. Neurochemistry international. 2013 Mar;62(4):399-405

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23416044

View Full Text