Correlation Engine 2.0
Clear Search sequence regions


Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions. Copyright © 2013 Wiley Periodicals, Inc.

Citation

Alexandra Dupire, Patricia Kant, Nicole Mons, Alain R Marchand, Etienne Coutureau, John Dalrymple-Alford, Mathieu Wolff. A role for anterior thalamic nuclei in affective cognition: interaction with environmental conditions. Hippocampus. 2013 May;23(5):392-404

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23436341

View Full Text