Correlation Engine 2.0
Clear Search sequence regions


Quinacrine has been widely used in treatment of parasitic diseases such as malaria and giardiasis, and in the treatment of autoimmune diseases. Quinacrine has also been used as an effective substitute for surgical contraception by causing occlusion of the fallopian tube. This minimally invasive treatment protocol involves intrauterine insertion of the drug in the form of pellets and has been studied in humans in a number of countries, including the United States. Despite its development in the 1970s, the cellular and molecular events induced by quinacrine in the human fallopian tube have not been described. Here we describe a plausible mechanism for quinacrine action in the fallopian tube. This is manifested as an acute pro-inflammatory response in the uterus and fallopian tube, characterized by loss of epithelial cell adhesion. This response relies on properties of gated channels found on the surface of epithelial cells in the reproductive tract. While the uterus returns to normal, the inflammatory response affects the uterotubal junction and transmural segment of the human fallopian tube, and initiates formation of mature collagen in the lumen of the fallopian tube, resulting in its permanent occlusion. The response within the fallopian tube appears similar to the protective mechanisms that have evolved in women to minimize the likelihood of systemic infection from Neisseria gonorrhoeae, and to some extent from Chlamydia trachomatis. This review could assist in development of experimental models used in investigating the mechanisms of fibrotic responses in humans as well as development of techniques for permanent non-surgical female contraception. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

Citation

Roger G Growe, Michael I Luster, Patricia A Fail, Jack Lippes. Quinacrine-induced occlusive fibrosis in the human fallopian tube is due to a unique inflammatory response and modification of repair mechanisms. Journal of reproductive immunology. 2013 Apr;97(2):159-66

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23453701

View Full Text