Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

We report the design of a novel glucose/O2 biofuel cell (GBFC) integrating carbon nanotube-based 3D bioelectrodes and using naphthoquinone-mediated oxidation of glucose by glucose oxidase and direct oxygen reduction by laccase. The GBFCs exhibit high open circuit voltages of 0.76 V, high current densities of 4.47 mA cm(-2), and maximum power output of 1.54 mW cm(-2), 1.92 mW mL(-1) and 2.67 mW g(-1). The GBFC is able to constantly deliver 0.56 mW h cm(-2) under discharge at 0.5 V, showing among the best in vitro performances for a GBFC. Using a charge pump, the GBFC finally powered a Light Emitting Diode (LED), demonstrating its ability to amplify micro watts to power mW-demanding electronic devices.

Citation

Bertrand Reuillard, Alan Le Goff, Charles Agnès, Michael Holzinger, Abdelkader Zebda, Chantal Gondran, Kamal Elouarzaki, Serge Cosnier. High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Physical chemistry chemical physics : PCCP. 2013 Apr 14;15(14):4892-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23455694

View Full Text