Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Timing of therapy plays a pivotal role in intensive care patients. Although being evident and self-explanatory, it has to be considered that the appropriateness of a specific therapeutic intervention is likewise important. In view of antibiotic therapy of critically ill patients, the available evidence supports the concept of hitting hard, early (as soon as possible and at least before the onset of shock) and appropriately. There is increasing evidence that a positive fluid balance is not only a cosmetic problem but is associated with increased morbidity. However, prospective studies are needed to elucidate whether a positive net fluid balance represents the cause or the effect of a specific disease. Since central venous pressure (CVP) is an unreliable marker of fluid responsiveness, its clinical use to guide fluid therapy is questionable. Dynamic hemodynamic parameters seem to be superior to CVP in predicting fluid responsiveness in hemodynamically unstable patients. Sedation is often used to facilitate mechanical ventilation. Since there is no best evidence-based sedation protocol, weaning strategies should take the risk of iatrogenic arterial hypotension secondary to high doses of vasodilatory sedative agents into account. In this regard, the concept of daily wake-up calls should be challenged, because higher cumulative doses of sedatives may be required. The right dose and timing for renal replacement therapy is still discussed controversially and remains a subjective decision of the attending physician. New renal biomarkers may perhaps be helpful to validate when (and how) renal replacement therapy should be performed best. Last but not least, all therapeutic interventions should take the individual co-morbidities and underlying pathophysiological conditions into account.

Citation

Martin Westphal. Get to the point in intensive care medicine--the sooner the better? Critical care (London, England). 2013;17 Suppl 1:S8

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23514562

View Full Text