Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Vestibular hair cell bundles in the inner ear each contain a single kinocilium that has the classic 9+2 axoneme microtubule structure. Kinocilia transmit movement of the overlying otoconial membrane mass and cupula to the mechanotransducing portion of the hair cell bundle. Here, we describe how force-deflection techniques can be used to measure turtle utricle kinocilium shaft and base rotational stiffness. In this approach, kinocilia are modeled as homogenous cylindrical rods and their deformation examined as both isotropic Euler-Bernoulli beams (bending only) and transversely isotropic Timoshenko beams (combined shear and bending). The measurements fit the transversely isotropic model much better with flexural rigidity EI=10,400 pN μm(2) (95% confidence interval: 7182-13,630) and shear rigidity kGA=247 pN (180-314), resulting in a shear modulus (G=1.9 kPa) that was four orders of magnitude less than Young's modulus (E=14.1 MPa), indicating that significant shear deformation occurs within deflected kinocilia. The base rotational stiffness (κ) was measured following BAPTA treatment to break the kinocilial links that bind the kinocilium to the bundle along its shaft, and κ was measured as 177±47 pN μm/rad. These parameters are important for understanding how forces arising from head movement are transduced and encoded. Copyright © 2013 Elsevier Inc. All rights reserved.

Citation

Corrie Spoon, Wally Grant. Biomechanical measurement of kinocilium. Methods in enzymology. 2013;525:21-43

Expand section icon Mesh Tags


PMID: 23522463

View Full Text