Correlation Engine 2.0
Clear Search sequence regions


  • brain (1)
  • dopamine (12)
  • elevates (1)
  • GABAA (1)
  • memory (2)
  • muscimol (3)
  • neurons (1)
  • rats (3)
  • rats long- evans (2)
  • reward (8)
  • signal (2)
  • Sizes of these terms reflect their relevance to your search.

    Dopamine (DA) cells have been suggested to signal discrepancies between expected and actual rewards in reinforcement learning. DA cells in the ventral tegmental area (VTA) receive direct projections from the medial prefrontal cortex (mPFC), a structure known to be one of the brain areas that represents expected future rewards. To investigate whether the mPFC contributes to generating reward prediction error signals of DA cells, we recorded VTA cells from rats foraging for different amounts of reward in a spatial working memory task. Our results showed that DA cells initially responded after the acquisition of rewards, but over training, they exhibited phasic responses when rats detected sensory cues originating from the rewards before obtaining them. We also observed two separate groups of non-DA cells activated in expectation of upcoming rewards or during reward consumption. Bilateral injections of muscimol, a GABAA agonist, into the mPFC significantly decreased the non-DA activity that encoded reward expectation. By contrast, the same manipulation of the mPFC elevated DA responses to reward-predicting cues. However, neither DA nor non-DA responses elicited after reward acquisition were affected by mPFC inactivation. These results suggest that the mPFC provides information about expected rewards to the VTA, and its functional loss elevates DA responses to reward-predicting cues by altering expectations about forthcoming rewards.

    Citation

    Yong Sang Jo, Jane Lee, Sheri J Y Mizumori. Effects of prefrontal cortical inactivation on neural activity in the ventral tegmental area. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2013 May 08;33(19):8159-71

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 23658156

    View Full Text