Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The sea fan coral (Gorgonia ventalina), one of the most abundant gorgonians in the tropical and subtropical Atlantic waters, have suffered several diseases that have diminished its abundance throughout their range. In this study, we present a model that analyzes the capacity of G. ventalina to eradicate a micro-pathogen under three immune responses: strong, moderate, and very weak. The model assumes that: (1) polyps are the main unit of the coral; (2) the population of polyps is homogeneously distributed; and (3) the immune system is activated by a signal. When an endosymbiont exceeds a density threshold, it becomes pathogenic, increasing polyp mortality. As a consequence, the colony emits a signal to its stem cells to differentiate into phagocytic and humoral cells, both of which combat the pathogen. Given a strong immune response, the pathogen is rapidly eradicated by the immune cells, and the coral polyp population returns to an equilibrium state. With a moderate immune response, polyps and pathogen coexist, but the maximum capacity of polyp density is never reached. An immunologically compromised colony offering a weak immune response is unable to stop pathogen growth, and the colony dies. This analysis suggests an alternative explanation for the spatial and temporal variability in disease incidence and mortality, which is based on the strength of the immune system of hosts rather than the virulence of the pathogen. Copyright © 2013 Elsevier Ltd. All rights reserved.

Citation

Claudia Patricia Ruiz-Diaz, Carlos Toledo-Hernández, Alberto M Sabat, Mariano Marcano. Immune response to a pathogen in corals. Journal of theoretical biology. 2013 Sep 7;332:141-8


PMID: 23659851

View Full Text