Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The intrinsic curvature of seven 98 bp DNA molecules containing up to four centrally located A6-tracts has been measured by gel and capillary electrophoresis as a function of the number and arrangement of the A-tracts. At low cation concentrations, the electrophoretic mobility observed in polyacrylamide gels and in free solution decreases progressively with the increasing number of phased A-tracts, as expected for DNA molecules with increasingly curved backbone structures. Anomalously slow electrophoretic mobilities are also observed for DNA molecules containing two pairs of phased A-tracts that are out of phase with each other, suggesting that out-of-phase distortions of the helix backbone do not cancel each other out. The mobility decreases observed for the A-tract samples are due to curvature, not cation binding in the A-tract minor groove, because identical free solution mobilities are observed for a molecule with four out-of-phase A-tracts and one with no A-tracts. Surprisingly, the curvature of DNA A-tracts is gradually lost when the monovalent cation concentration is increased to ∼200 mM, regardless of whether the cation is a hydrophilic ion like Na+, NH4+, or Tris+ or a hydrophobic ion like tetrabutylammonium. The decrease in A-tract curvature with increasing ionic strength, along with the known decrease in A-tract curvature with increasing temperature, suggests that DNA A-tracts are not significantly curved under physiological conditions.

Citation

Earle Stellwagen, Justin P Peters, L James Maher, Nancy C Stellwagen. DNA A-tracts are not curved in solutions containing high concentrations of monovalent cations. Biochemistry. 2013 Jun 18;52(24):4138-48

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23675817

View Full Text