Correlation Engine 2.0
Clear Search sequence regions


Visual deprivation profoundly affects visual cortical response properties, but the activity-dependent plasticity mechanisms that underlie these changes are poorly understood. Monocular deprivation (MD) induces ocular dominance (OD) shifts through biphasic changes in cortical excitability, first decreasing responsiveness to the deprived eye, and then slowly increasing responsiveness to both the deprived and spared eyes. It has been suggested that this slow gain of responsiveness is due to homeostatic synaptic scaling, but this prediction has not been tested directly. Here we show that, in rat monocular and binocular primary visual cortex (V1m and V1b), postsynaptic strength onto layer 2/3 (L2/3) pyramidal neurons is modulated in a biphasic manner by MD, first undergoing a net decrease after 1 and 2 d MD, increasing back to baseline after 3 d, and finally undergoing a net potentiation between 3 and 6 d. The time course and direction of these synaptic changes match well the known changes in visual responsiveness during OD plasticity. Viral-mediated delivery of the GluA2 C-tail in vivo blocked these synaptic changes, indicating that, like synaptic scaling in vitro, AMPA receptor trafficking via the GluA2 C-tail is required for the delayed increase in postsynaptic strength. Finally, we also observed a delayed increase in the intrinsic excitability of L2/3 pyramidal neurons following prolonged MD. These data indicate that synaptic and intrinsic homeostatic mechanisms cooperate to increase excitability of L2/3 pyramidal neurons following prolonged MD, and suggest that these homeostatic mechanisms contribute to the delayed gain of visual responsiveness during OD plasticity.

Citation

Mary E Lambo, Gina G Turrigiano. Synaptic and intrinsic homeostatic mechanisms cooperate to increase L2/3 pyramidal neuron excitability during a late phase of critical period plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2013 May 15;33(20):8810-9

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23678123

View Full Text