Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

This study was conducted to evaluate the true digestibility of P in soybean meal (SBM) for broiler chickens fed diets with different dietary calcium-to-phosphorus ratios (Ca:P) using the regression method. The experiment used a 4 × 3 factorial arrangement with 12 diets formulated to contain combinations of 4 levels of dietary Ca:P: 0.8, 1.2, 1.6, or 2.0 and 3 levels of SBM: 31.0, 44.0, or 57.0%. A total of 576 male Ross 708 broilers were allocated to 12 dietary treatments with 8 cages (6 birds per cage) per treatment from d 15 to 22 posthatching, and the BW between groups were similar. Chromic dioxide was used as an indigestible marker to calculate P digestibility and retention. The results showed that BW gain and feed efficiency were increased (linear, P < 0.01), and prececal DM digestibility and DM retention were decreased (linear, P < 0.01) with graded SBM in diets for each Ca:P. Decreasing linear (P < 0.01) relationships were observed for apparent prececal P digestibility and total tract P retention with increased dietary SBM levels. The prececal and excreta P output increased (linear, P < 0.01; quadratic, P < 0.05) as increasing levels of SBM were added to the experimental diets. True prececal P digestibility in SBM was greater (P < 0.05) for birds fed a diet with Ca:P of 0.8 compared with those fed higher Ca:P, but there was no difference among the Ca:P ratios between 1.2 and 2.0. However, the total tract retention of P from SBM was not affected by Ca:P between 0.8 and 2.0. In conclusion, results of the present experiment demonstrated that prececal digestibility of P in SBM was not affected by Ca:P ratio between 1.2 and 2.0; and there was no difference in total tract retention of P from SBM among the Ca:P ratios between 0.8 and 2.0 in broiler chickens.


J B Liu, D W Chen, O Adeola. Phosphorus digestibility response of broiler chickens to dietary calcium-to-phosphorus ratios. Poultry science. 2013 Jun;92(6):1572-8

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 23687154

View Full Text