Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.

Citation

Li Xiang, Wim Van den Ende. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. Plant & cell physiology. 2013 Aug;54(8):1263-77


PMID: 23737500

View Full Text