Correlation Engine 2.0
Clear Search sequence regions

  • antennaless (1)
  • arthropod (1)
  • beetle (2)
  • coleoptera (1)
  • drosophila (4)
  • embryos (2)
  • gene networks (1)
  • helps (1)
  • Hox (1)
  • knirps (2)
  • mandible (3)
  • phenotypes (1)
  • segments (9)
  • tribolium (4)
  • Sizes of these terms reflect their relevance to your search.

    The Drosophila larval head is evolutionarily derived at the genetic and morphological level. In the beetle Tribolium castaneum, development of the larval head more closely resembles the ancestral arthropod condition. Unlike in Drosophila, a knirps homologue (Tc-kni) is required for development of the antennae and mandibles. However, published Tc-kni data are restricted to cuticle phenotypes and Tc-even-skipped and Tc-wingless stainings in knockdown embryos. Hence, it has remained unclear whether the entire antennal and mandibular segments depend on Tc-kni function, and whether the intervening intercalary segment is formed completely. We address these questions with a detailed examination of Tc-kni function. By examining the expression of marker genes in RNAi embryos, we show that Tc-kni is required only for the formation of the posterior parts of the antennal and mandibular segments (i.e. the parasegmental boundaries). Moreover, we find that the role of Tc-kni is distinct in these segments: Tc-kni is required for the initiation of the antennal parasegment boundary, but only for the maintenance of the mandibular parasegmental boundary. Surprisingly, Tc-kni controls the timing of expression of the Hox gene Tc-labial in the intercalary segment, although this segment does form in the absence of Tc-kni function. Unexpectedly, we find that the pair-rule gene Tc-even-skipped helps set the posterior boundary of Tc-kni expression in the mandible. Using the mutant antennaless, a likely regulatory Null mutation at the Tc-kni locus, we provide evidence that our RNAi studies represent a Null situation. Tc-kni is required for the initiation of the antennal and the maintenance of the mandibular parasegmental boundaries. Tc-kni is not required for specification of the anterior regions of these segments, nor the intervening intercalary segment, confirming that Tc-kni is not a canonical 'gap-gene'. Our finding that a gap gene orthologue is regulated by a pair rule gene adds to the view that the segmentation gene hierarchies differ between Tribolium and Drosophila upstream of the pair rule gene level. In Tribolium, as in Drosophila, head and trunk segmentation gene networks cooperate to pattern the mandibular segment, albeit involving Tc-kni as novel component.


    Andrew D Peel, Julia Schanda, Daniela Grossmann, Frank Ruge, Georg Oberhofer, Anna F Gilles, Johannes B Schinko, Martin Klingler, Gregor Bucher. Tc-knirps plays different roles in the specification of antennal and mandibular parasegment boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum. BMC developmental biology. 2013 Jun 18;13:25

    Expand section icon Mesh Tags

    PMID: 23777260

    View Full Text