Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

When NF-κB activation or protein synthesis is inhibited, tumor necrosis factor alpha (TNFα) can induce apoptosis through Bax- and Bak-mediated mitochondrial outer membrane permeabilization (MOMP) leading to caspase-3 activation. Additionally, previous studies have implicated lysosomal membrane permeability (LMP) and formation of reactive oxygen species (ROS) as early steps of TNFα-induced apoptosis. However, how these two events connect to MOMP and caspase-3 activation has been largely debated. Here, we present the novel finding that LMP induced by the addition of TNFα plus cycloheximide (CHX), the release of lysosomal cathepsins and ROS formation do not occur upstream but downstream of MOMP and require the caspase-3-mediated cleavage of the p75 NDUFS1 subunit of respiratory complex I. Both a caspase non-cleavable p75 mutant and the mitochondrially localized antioxidant MitoQ prevent LMP mediated by TNFα plus CHX and partially interfere with apoptosis induction. Moreover, LMP is completely blocked in cells deficient in both Bax and Bak, Apaf-1, caspase-9 or both caspase-3 and -7. Thus, after MOMP, active caspase-3 exerts a feedback action on complex I to produce ROS. ROS then provoke LMP, cathepsin release and further caspase activation to amplify TNFα apoptosis signaling.

Citation

Jisen Huai, F-Nora Vögtle, Lars Jöckel, Yunbo Li, Thomas Kiefer, Jean-Ehrland Ricci, Christoph Borner. TNFα-induced lysosomal membrane permeability is downstream of MOMP and triggered by caspase-mediated NDUFS1 cleavage and ROS formation. Journal of cell science. 2013 Sep 01;126(Pt 17):4015-25

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23788428

View Full Text