Correlation Engine 2.0
Clear Search sequence regions


  • actin cytoskeleton (1)
  • amino acids (3)
  • brain (2)
  • cellular (1)
  • cytoskeleton (2)
  • dioxygenases (2)
  • ETHE1 (2)
  • female (1)
  • hydrogen (1)
  • lipid (1)
  • lipolysis (1)
  • liver (2)
  • mice (4)
  • mice knockout (1)
  • muscle skeletal (1)
  • organ specificity (1)
  • patients (1)
  • proteomes (1)
  • redox (1)
  • regulates (1)
  • signal (1)
  • strain (1)
  • sulfides (2)
  • sulfur (1)
  • Sizes of these terms reflect their relevance to your search.

    Hydrogen sulfide is a physiologically relevant signalling molecule. However, circulating levels of this highly biologically active substance have to be maintained within tightly controlled limits in order to avoid toxic side effects. In patients suffering from EE (ethylmalonic encephalopathy), a block in sulfide oxidation at the level of the SDO (sulfur dioxygenase) ETHE1 leads to severe dysfunctions in microcirculation and cellular energy metabolism. We used an Ethe1-deficient mouse model to investigate the effect of increased sulfide and persulfide concentrations on liver, kidney, muscle and brain proteomes. Major disturbances in post-translational protein modifications indicate that the mitochondrial sulfide oxidation pathway could have a crucial function during sulfide signalling most probably via the regulation of cysteine S-modifications. Our results confirm the involvement of sulfide in redox regulation and cytoskeleton dynamics. In addition, they suggest that sulfide signalling specifically regulates mitochondrial catabolism of FAs (fatty acids) and BCAAs (branched-chain amino acids). These findings are particularly relevant in the context of EE since they may explain major symptoms of the disease.

    Citation

    Tatjana M Hildebrandt, Ivano Di Meo, Massimo Zeviani, Carlo Viscomi, Hans-Peter Braun. Proteome adaptations in Ethe1-deficient mice indicate a role in lipid catabolism and cytoskeleton organization via post-translational protein modifications. Bioscience reports. 2013 Jul 25;33(4)

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 23800285

    View Full Text