Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Scutellaria baicalensis (SB), a traditional herb with high pharmacological value, contains more than 10% flavone by weight. To improve the biological activity of flavones in SB, we aimed to enhance the bioconversion of baicalin (BG) to baicalein (B) and wogonoside (WG) to wogonin (W) in SB during fermentation using beta-glucuronidase produced from Lactobacillus brevis RO1. After activation, L. brevis RO1 was cultured in milk containing SB root extract with various carbon or nitrogen sources at 37°C for 72 h. During fermentation, the growth patterns of L. brevis RO1 and changes in the flavone content were assessed using thin-layer chromatography and high-performance liquid chromatography. After 72 h of fermentation, the concentrations of B and W in the control group increased by only 0.15 and 0.12 mM, respectively, whereas they increased by 0.57 and 0.24 mM in the fish peptone group. The production of B and W was enhanced by the addition of 0.4% fish peptone, which not only improved the growth of L. brevis RO1 (p < 0.001) but also enhanced the bioconversion of flavones. In conclusion, the bioconversion of flavones in SB may provide a potential application for the enhancement of the functional components in SB.

Citation

Chen Xu, Geun-Eog Ji. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis. Journal of microbiology and biotechnology. 2013 Oct 28;23(10):1422-7

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23851266

View Full Text