Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Cooperation between cadherins and the actin cytoskeleton controls the formation and maintenance of cell-cell adhesions in epithelia. We find that the molecular motor protein myosin-1c (Myo1c) regulates the dynamic stability of E-cadherin-based cell-cell contacts. In Myo1c-depleted Madin-Darby canine kidney cells, E-cadherin localization was dis-organized and lateral membranes appeared less vertical with convoluted edges versus control cells. In polarized monolayers, Myo1c-knockdown (KD) cells were more sensitive to reduced calcium concentration. Myo1c separated in the same plasma membrane fractions as E-cadherin, and Myo1c KD caused a significant reduction in the amount of E-cadherin recovered in one peak fraction. Expression of green fluorescent protein (GFP)-Myo1c mutants revealed that the phosphatidylinositol-4,5-bisphosphate-binding site is necessary for its localization to cell-cell adhesions, and fluorescence recovery after photobleaching assays with GFP-Myo1c mutants revealed that motor function was important for Myo1c dynamics at these sites. At 18°C, which inhibits vesicle recycling, Myo1c-KD cells accumulated more E-cadherin-positive vesicles in their cytoplasm, suggesting that Myo1c affects E-cadherin endocytosis. Studies with photoactivatable GFP-E-cadherin showed that Myo1c KD reduced the stability of E-cadherin at cell-cell adhesions. We conclude that Myo1c stabilizes E-cadherin at adherens junctions in polarized epithelial cells and that the motor function and ability of Myo1c to bind membrane are critical.

Citation

Hiroshi Tokuo, Lynne M Coluccio. Myosin-1c regulates the dynamic stability of E-cadherin-based cell-cell contacts in polarized Madin-Darby canine kidney cells. Molecular biology of the cell. 2013 Sep;24(18):2820-33

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 23864705

View Full Text