Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

The pore-forming toxin lysenin self-inserts to form conductance channels in natural and artificial lipid membranes containing sphingomyelin. The inserted channels exhibit voltage regulation and hysteresis of the macroscopic current during the application of positive periodic voltage stimuli. We explored the bi-stable behavior of lysenin channels and present a theoretical approach for the mechanism of the hysteresis to explain its static and dynamic components. This investigation develops a model to incorporate the role of charge accumulation on the bilayer lipid membrane in influencing the channel conduction state. Our model is supported by experimental results and also provides insight into the temperature dependence of lysenin channel hysteresis. Through this work we gain perspective into the mechanism of how the response of a channel protein is determined by previous stimuli. © 2013.


Eric Krueger, Radwan Al Faouri, Daniel Fologea, Ralph Henry, David Straub, Greg Salamo. A model for the hysteresis observed in gating of lysenin channels. Biophysical chemistry. 2013 Dec 31;184:126-30

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 24075493

View Full Text