Correlation Engine 2.0
Clear Search sequence regions


  • analysis fourier (4)
  • behavior (1)
  • carbopol 940 (6)
  • cyclohexanes (2)
  • electron (2)
  • flow (1)
  • model drug (1)
  • patient (1)
  • red (2)
  • resins (2)
  • sodium (2)
  • vitro (1)
  • Sizes of these terms reflect their relevance to your search.

    This study involves the design and characterization of Nateglinide (NAT) microspheres to enhance patient compliance. Ionic gelation technique was used to prepare Nateglinide Microspheres by using rate controlling polymers Carbopol-940 and Hydroxypropylmethyl cellulose (HPMC). Shape and surface were evaluated with Scanning electron microscopy (SEM). Percentage Yield, Particle size analysis, Encapsulating Efficiency, Micromeritic analysis, Fourier Transform Infra-Red Spectroscopy (FTIR), Differential Scanning Colorimetry (DSC) were done for characterization of Microspheres. Drug release studies were performed at pH 1.2 and 7.2 using USP dissolution type-II apparatus and release rates were analyzed by the application of different pharmacokinetic models. The size of microspheres was found to be varied from 781μm to 853μm. Rheological studies proved excellent flow behavior while percentage yield was found to be varied from 72% to 79%. Absence of drug-polymers interactions was confirmed from FTIR and DSC results. The microspheres prepared with sodium alginate showed cracks while microspheres obtained from blend of Carbopol-940 plus sodium alginate were smooth and spherical. Maximum entrapment efficiency (71.4%) was achieved for Microspheres with Carbopol-940. The greater retardation in drug release was observed for microspheres containing Carbopol-940 and release pattern followed Higuchi kinetics model and negligible drug release was observed at pH 1.2.

    Citation

    Sajid Bashir, Imran Nazir, Hafeezullah Khan, Alamgeer, Muhammad Asad, Fakhar ul Hassnain, Sumbul Qamar. Formulation and in vitro evaluation of nateglinide microspheres using HPMC and carbopol-940 polymers by ionic gelation method. Pakistan journal of pharmaceutical sciences. 2013 Nov;26(6):1229-35

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 24191331

    View Full Text