Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Macrophages and vascular smooth muscle cells (VSMCs) are the major cell types involved in foam cell formation associated with atherosclerosis. The aim of this experiment was to clarify cell-specific regulation of LDL receptor in THP-1 macrophages and human VSMCs under physiological and inflammatory conditions and its potential mechanisms. Inflammatory stress was induced by adding lipopolysaccharide (LPS) to human THP-1 macrophages and human VSMCs. Intracellular total cholesterol, free cholesterol, and cholesterol ester were measured by an enzymic assay. Oil Red O staining was used to visualize lipid droplet accumulation in cells. Total cellular RNA was isolated from cells for detecting LDL receptor, sterol regulatory element binding protein (SREBP)-2 and SREBP cleavage-activating protein (SCAP) mRNA levels using real-time quantitative polymerase chain reaction. LDL receptor, SREBP-2 and SCAP protein expression were examined by Western blotting. The translocation of SCAP from ER to Golgi was detected by confocal microscopy. LDL loading increased intracellular cholesterol level, reducing LDL receptor mRNA level in both THP-1 macrophages and VSMCs under physiological conditions. The IC50 in VSMCs was 11.25 μg/ml, which is much lower than 18.125 μg/ml in THP-1 macrophages. With the increase in concentration of LPS (0-400 ng/ml), the LDL receptor mRNA levels were upregulated in both cells, but the curve of LDL receptor mRNA in VSMCs exhibited a flatter profile than that of THP-1 macrophages. Under the treatment of 200 ng/ml of LPS, the upregulation fold of the LDL receptor mRNA in THP-1 macrophages was much higher than that of VSMCs (0.33 vs 0.04). LDL receptor blocking agent heparin decreased lipid droplets induced by LPS significantly in THP-1 macrophages and VSMCs. LDL loading reduced the SREBP2 and SCAP protein expression under physiological conditions. Exposure to LPS caused overexpression of SREBP2 and SCAP despite a high concentration of LDL in the culture medium, and increased translocation of SCAP from the ER to the Golgi in the presence of 25 μg/ml of LDL. Inflammatory stress disrupts LDL receptor negative feedback regulation induced by intracellular cholesterol in both cell types, to a greater degree in THP-1 macrophages, which could be one reason why THP-1 macrophages are more prone to become foam cells under inflammatory stress.

Citation

Qiang Ye, Han Lei, Zhongcai Fan, Wenwu Zheng, Shuzhan Zheng. Difference in LDL receptor feedback regulation in macrophages and vascular smooth muscle cells: foam cell transformation under inflammatory stress. Inflammation. 2014 Apr;37(2):555-65

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24297394

View Full Text