Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Epstein-Barr virus nuclear antigen 3C (EBNA3C) repression of CDKN2A p14(ARF) and p16(INK4A) is essential for immortal human B-lymphoblastoid cell line (LCL) growth. EBNA3C ChIP-sequencing identified >13,000 EBNA3C sites in LCL DNA. Most EBNA3C sites were associated with active transcription; 64% were strong H3K4me1- and H3K27ac-marked enhancers and 16% were active promoters marked by H3K4me3 and H3K9ac. Using ENCODE LCL transcription factor ChIP-sequencing data, EBNA3C sites coincided (±250 bp) with RUNX3 (64%), BATF (55%), ATF2 (51%), IRF4 (41%), MEF2A (35%), PAX5 (34%), SPI1 (29%), BCL11a (28%), SP1 (26%), TCF12 (23%), NF-κB (23%), POU2F2 (23%), and RBPJ (16%). EBNA3C sites separated into five distinct clusters: (i) Sin3A, (ii) EBNA2/RBPJ, (iii) SPI1, and (iv) strong or (v) weak BATF/IRF4. EBNA3C signals were positively affected by RUNX3, BATF/IRF4 (AICE) and SPI1/IRF4 (EICE) cooccupancy. Gene set enrichment analyses correlated EBNA3C/Sin3A promoter sites with transcription down-regulation (P < 1.6 × 10(-4)). EBNA3C signals were strongest at BATF/IRF4 and SPI1/IRF4 composite sites. EBNA3C bound strongly to the p14(ARF) promoter through SPI1/IRF4/BATF/RUNX3, establishing RBPJ-, Sin3A-, and REST-mediated repression. EBNA3C immune precipitated with Sin3A and conditional EBNA3C inactivation significantly decreased Sin3A binding at the p14(ARF) promoter (P < 0.05). These data support a model in which EBNA3C binds strongly to BATF/IRF4/SPI1/RUNX3 sites to enhance transcription and recruits RBPJ/Sin3A- and REST/NRSF-repressive complexes to repress p14(ARF) and p16(INK4A) expression.

Citation

Sizun Jiang, Bradford Willox, Hufeng Zhou, Amy M Holthaus, Anqi Wang, Tommy T Shi, Seiji Maruo, Peter V Kharchenko, Eric C Johannsen, Elliott Kieff, Bo Zhao. Epstein-Barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A. Proceedings of the National Academy of Sciences of the United States of America. 2014 Jan 07;111(1):421-6

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24344258

View Full Text