Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Flap endonucleases remove flap structures generated during DNA replication. Gene 6 protein of bacteriophage T7 is a 5'-3'-exonuclease specific for dsDNA. Here we show that gene 6 protein also possesses a structure-specific endonuclease activity similar to known flap endonucleases. The flap endonuclease activity is less active relative to its exonuclease activity. The major cleavage by the endonuclease activity occurs at a position one nucleotide into the duplex region adjacent to a dsDNA-ssDNA junction. The efficiency of cleavage of the flap decreases with increasing length of the 5'-overhang. A 3'-single-stranded tail arising from the same end of the duplex as the 5'-tail inhibits gene 6 protein flap endonuclease activity. The released flap is not degraded further, but the exonuclease activity then proceeds to hydrolyze the 5'-terminal strand of the duplex. T7 gene 2.5 single-stranded DNA-binding protein stimulates the exonuclease and also the endonuclease activity. This stimulation is attributed to a specific interaction between the two proteins because Escherichia coli single-stranded DNA binding protein does not produce this stimulatory effect. The ability of gene 6 protein to remove 5'-terminal overhangs as well as to remove nucleotides from the 5'-termini enables it to effectively process the 5'-termini of Okazaki fragments before they are ligated.

Citation

Hitoshi Mitsunobu, Bin Zhu, Seung-Joo Lee, Stanley Tabor, Charles C Richardson. Flap endonuclease activity of gene 6 exonuclease of bacteriophage T7. The Journal of biological chemistry. 2014 Feb 28;289(9):5860-75

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24394415

View Full Text