Correlation Engine 2.0
Clear Search sequence regions


  • ATP (3)
  • avidin (1)
  • biotin (1)
  • cell movement (1)
  • cellular (2)
  • DUOX1 (11)
  • duox1 protein, human (1)
  • gene (1)
  • human (2)
  • lung (1)
  • MAPK (2)
  • mice (2)
  • NADPH (3)
  • oxidases (4)
  • peroxiredoxin 1 (1)
  • protein human (1)
  • redox (4)
  • signal (1)
  • Src 1 (1)
  • trachea (1)
  • β actin (1)
  • Sizes of these terms reflect their relevance to your search.

    The NADPH oxidase homolog dual oxidase 1 (DUOX1) plays an important role in innate airway epithelial responses to infection or injury, but the precise molecular mechanisms are incompletely understood and the cellular redox-sensitive targets for DUOX1-derived H2O2 have not been identified. The aim of the present study was to survey the involvement of DUOX1 in cellular redox signaling by protein S-glutathionylation, a major mode of reversible redox signaling. Using human airway epithelial H292 cells and stable transfection with DUOX1-targeted shRNA as well as primary tracheal epithelial cells from either wild-type or DUOX1-deficient mice, DUOX1 was found to be critical in ATP-stimulated transient production of H2O2 and increased protein S-glutathionylation. Using cell pre-labeling with biotin-tagged GSH and analysis of avidin-purified proteins by global proteomics, 61 S-glutathionylated proteins were identified in ATP-stimulated cells compared to 19 in untreated cells. Based on a previously established role of DUOX1 in cell migration, various redox-sensitive proteins with established roles in cytoskeletal dynamics and/or cell migration were evaluated for S-glutathionylation, indicating a critical role for DUOX1 in ATP-stimulated S-glutathionylation of β-actin, peroxiredoxin 1, the non-receptor tyrosine kinase Src, and MAPK phosphatase 1. Overall, our studies demonstrate the importance of DUOX1 in epithelial redox signaling through reversible S-glutathionylation of a range of proteins, including proteins involved in cytoskeletal regulation and MAPK signaling pathways involved in cell migration.

    Citation

    Milena Hristova, Carmen Veith, Aida Habibovic, Ying-Wai Lam, Bin Deng, Miklos Geiszt, Yvonne M W Janssen-Heininger, Albert van der Vliet. Identification of DUOX1-dependent redox signaling through protein S-glutathionylation in airway epithelial cells. Redox biology. 2014;2:436-46

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 24624333

    View Full Text