Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The Olfactory Receptor (OR) superfamily, the largest in the vertebrate genome, is responsible for vertebrate olfaction and is traditionally subdivided into 17 OR families. Recent studies characterising whole-OR subgenomes revealed a 'birth and death' model of evolution for a range of species, however little is known about fine-scale evolutionary dynamics within single-OR families. This study reports the first assessment of fine-scale OR evolution and variation in African mole-rats (Bathyergidae), a family of subterranean rodents endemic to sub-Saharan Africa. Because of the selective pressures of life underground, enhanced olfaction is proposed to be fundamental to the evolutionary success of the Bathyergidae, resulting in a highly diversified OR gene-repertoire. Using a PCR-sequencing approach, we analysed variation in the OR7 family across 14 extant bathyergid species, which revealed enhanced levels of functional polymorphisms concentrated across the receptors' ligand-binding region. We propose that mole-rats are able to recognise a broad range of odorants and that this diversity is reflected throughout their OR7 gene repertoire. Using both classic tests and tree-based methods to test for signals of selection, we investigate evolutionary forces across the mole-rat OR7 gene tree. Four well-supported clades emerged in the OR phylogeny, with varying signals of selection; from neutrality to positive and purifying selection. Bathyergid life-history traits and environmental niche-specialisation are explored as possible drivers of adaptive OR evolution, emerging as non-exclusive contributors to the positive selection observed at OR7 genes. Our results reveal unexpected complexity of evolutionary mechanisms acting within a single OR family, providing insightful perspectives into OR evolutionary dynamics.

Citation

Sofia Stathopoulos, Jacqueline M Bishop, Colleen O'Ryan. Genetic signatures for enhanced olfaction in the African mole-rats. PloS one. 2014;9(4):e93336

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24699281

View Full Text