Correlation Engine 2.0
Clear Search sequence regions


  • and disease (1)
  • antibodies (1)
  • antigens (1)
  • caustic (1)
  • cell hypoxia (1)
  • colon (1)
  • Elavl3 (1)
  • Elavl4 (1)
  • essential (1)
  • GFAP (4)
  • hu antigens (1)
  • HuC (9)
  • hypoxia (1)
  • mice (2)
  • neuroglia (3)
  • neurons (5)
  • oxygen (1)
  • proteins D (1)
  • proteins huc (1)
  • rna (1)
  • RNA D (1)
  • Sox10 (2)
  • toxins (1)
  • Sizes of these terms reflect their relevance to your search.

    Correct neuronal identification is essential to study neurons in health and disease. Although commonly used as pan-neuronal marker, HuC/D's expression pattern varies substantially between healthy and (patho)physiological conditions. This heterogenic labeling has received very little attention. We sought to investigate the subcellular HuC/D localization in enteric neurons in different conditions. The localization of neuronal RNA-binding proteins HuC/D was investigated by immunohistochemistry in the mouse myenteric plexus using different toxins and caustic agents. Preparations were also stained with Sox10 and glial fibrillary acidic protein (GFAP) antibodies to assess enteric glial cell appearance. Mechanically induced tissue damage, interference with the respiratory chain and oxygen (O2 ) deprivation increased nuclear HuC/D immunoreactivity. This effect was paralleled by a distortion of the GFAP-labeled glial network along with a loss of Sox10 expression and coincided with the activation of a non-apoptotic genetic program. Chemically induced damage and specific noxious stimuli did not induce a change in HuC/D immunoreactivity, supporting the specific nature of the nuclear HuC/D localization. HuC/D is not merely a pan-neuronal marker but its subcellular localization also reflects the condition of a neuron at the time of fixation. The functional meaning of this change in HuC/D localization is not entirely clear, but disturbance in O2 supply in combination with the support of enteric glial cells seems to play a crucial role. The molecular consequence of changes in HuC/D expression needs to be further investigated. © 2014 John Wiley & Sons Ltd.

    Citation

    A-S Desmet, C Cirillo, P Vanden Berghe. Distinct subcellular localization of the neuronal marker HuC/D reveals hypoxia-induced damage in enteric neurons. Neurogastroenterology and motility : the official journal of the European Gastrointestinal Motility Society. 2014 Aug;26(8):1131-43

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 24861242

    View Full Text