Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

Citation

Zhi-Yong Gao, You-Ke Wang, Xin-Guang Wei, Shou-Yang Liu, Zi-Li He, Yu-Hong Zhou. Indoor simulation on dew formation on plant leaves]. Ying yong sheng tai xue bao = The journal of applied ecology / Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban. 2014 Mar;25(3):725-30

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 24984489

View Full Text