Correlation Engine 2.0
Clear Search sequence regions


filter terms:
Sizes of these terms reflect their relevance to your search.

Haplotype-based scans to detect natural selection are useful to identify recent or ongoing positive selection in genomes. As both real and simulated genomic data sets grow larger, spanning thousands of samples and millions of markers, there is a need for a fast and efficient implementation of these scans for general use. Here, we present selscan, an efficient multithreaded application that implements Extended Haplotype Homozygosity (EHH), Integrated Haplotype Score (iHS), and Cross-population EHH (XPEHH). selscan accepts phased genotypes in multiple formats, including TPED, and performs extremely well on both simulated and real data and over an order of magnitude faster than existing available implementations. It calculates iHS on chromosome 22 (22,147 loci) across 204 CEU haplotypes in 353 s on one thread (33 s on 16 threads) and calculates XPEHH for the same data relative to 210 YRI haplotypes in 578 s on one thread (52 s on 16 threads). Source code and binaries (Windows, OSX, and Linux) are available at https://github.com/szpiech/selscan. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

Citation

Zachary A Szpiech, Ryan D Hernandez. selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Molecular biology and evolution. 2014 Oct;31(10):2824-7

Expand section icon Mesh Tags


PMID: 25015648

View Full Text