Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The spliceosomal factor TRAP150 is essential for pre-mRNA splicing in vivo and, when overexpressed, it enhances splicing efficiency. In this study, we found that TRAP150 interacted with the cleavage and polyadenylation specificity factor (CPSF) and co-fractionated with CPSF and RNA polymerase II. Moreover, TRAP150 preferentially associated with the U1 small ribonucleoprotein (snRNP). However, our data do not support a role for TRAP150 in alternative 5' splice site or exon selection or in alternative polyadenylation. Because U1 snRNP participates in premature cleavage and polyadenylation (PCPA), we tested whether TRAP150 is a cofactor in the control of PCPA. Although TRAP150 depletion had no significant effect on PCPA, overexpression of TRAP150 forced activation of a cryptic 3' splice site, yielding spliced PCPA transcripts. Mechanistic studies showed that TRAP150-activated splicing occurred in composite but not authentic terminal exons, and such an activity was enhanced by debilitation of U1 snRNP or interference with transcription elongation or termination. Together, these results indicate that TRAP150 provides an additional layer of PCPA regulation, through which it may increase the diversity of abortive RNA transcripts under conditions of compromised gene expression. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

Citation

Kuo-Ming Lee, Woan-Yuh Tarn. TRAP150 activates splicing in composite terminal exons. Nucleic acids research. 2014 Nov 10;42(20):12822-32

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25326322

View Full Text