Correlation Engine 2.0
Clear Search sequence regions


Side reactions which may affect the determination of phosphatidate phosphatase activity were investigated in rat liver cytosol and microsomes. Incubation of these subcellular fractions with either 14C-labeled phosphatidate bound to microsomal membranes (PAmb) or that coemulsified with microsomal lipids resulted in rapid formation of water-soluble products, most of which were identified as glycerol, in addition to diacylglycerol. Neither lysophosphatidate nor glycerol 3-phosphate accumulated under any of the conditions used and only a minute amount of activity catalyzing hydrolysis of glycerol 3-phosphate could be detected in cytosol and microsomes, suggesting that glycerol was not formed by the deacylation of phosphatidate to glycerol 3-phosphate and subsequent dephosphorylation. On the other hand, pretreatment of cytosol or microsomes with diisopropylfluorophosphate abolished the formation of water-soluble products, indicating that glycerol was formed from diacylglycerol, the product of the phosphatidate phosphatase reaction, by lipase-type activities. Rapid deacylation of diacylglycerol by these subcellular fractions was also observed with an emulsion of phosphatidate, which has been purified from the total lipid extract of PAmb as substrate. The rate of hydrolysis of diacylglycerol was maximum when the concentration of diacylglycerol was less than 20 microM with either cytosol or microsomes. The present results suggest that it is essential to characterize the reaction products before employing specific assay conditions for phosphatidate phosphatase. At least under the conditions we tested, reliable measurement of the enzyme activity in rat liver cytosol and microsomes can be achieved only by determining the release of Pi or that of water-soluble activity from 32P-labeled phosphatidate.

Citation

H Ide, Y Nakazawa. Rapid hydrolysis of diacylglycerol formed during phosphatidate phosphatase assay by lipase activities in rat liver cytosol and microsomes. Archives of biochemistry and biophysics. 1989 May 15;271(1):177-87

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 2540711

View Full Text