Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Kv1.4 potassium channels are heavily glycosylated proteins involved in shaping action potentials and in neuronal excitability and plasticity. Kv1.4 N354Q, without an N-glycan, exhibited decreased protein stability and trafficking to the cell surface (Watanabe et al. in J Biol Chem 279:8879-8885, 2004). Here we investigated whether the composition of the N-glycan affected Kv1.4 cell surface expression. Kv1.4 proteins carrying N-glycans with different compositions were generated by adding glycosidase inhibitors or using N-glycosylation-deficient mutant cell lines. We found that oligomannose-type, hybrid-type, or incomplete complex-type N-glycans had a negative effect on surface protein expression of Kv1.4 compared with complex-type N-glycans. The decrease in surface protein level of Kv1.4 was mainly due to a reduction in total protein level, induced by altered N-glycan composition. Kv1.4 in CSTP-treated cells carried a unique oligomannose-type N-glycan that contains three glucose residues. This N-glycan had the most negative effect on cell surface expression of Kv1.4. It decreased Kv1.4 surface protein level by a combined mechanism of reducing total protein level and increasing ER-retention. Our data suggest that composition of the N-glycan plays an important role in protein stability and trafficking, and a sialylated complex-type N-glycan promoted high cell surface expression of Kv1.4.

Citation

Itaru Watanabe, Jing Zhu, Esperanza Recio-Pinto, William B Thornhill. The degree of N-glycosylation affects the trafficking and cell surface expression levels of Kv1.4 potassium channels. The Journal of membrane biology. 2015 Apr;248(2):187-96

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25416425

View Full Text