Correlation Engine 2.0
Clear Search sequence regions


Intrahepatic cholangiocarcinoma (iCCA) is a fatal bile duct cancer with dismal prognosis and limited therapeutic options. By performing RNA- and exome-sequencing analyses, we report a novel fusion event, FGFR2-PPHLN1 (16%), and damaging mutations in the ARAF oncogene (11%). Here we demonstrate that the chromosomal translocation t(10;12)(q26;q12) leading to FGFR2-PPHLN1 fusion possesses transforming and oncogenic activity, which is successfully inhibited by a selective FGFR2 inhibitor in vitro. Among the ARAF mutations, N217I and G322S lead to activation of the pathway and N217I shows oncogenic potential in vitro. Screening of a cohort of 107 iCCA patients reveals that FGFR2 fusions represent the most recurrent targetable alteration (45%, 17/107), while they are rarely present in other primary liver tumours (0/100 of hepatocellular carcinoma (HCC); 1/21 of mixed iCCA-HCC). Taken together, around 70% of iCCA patients harbour at least one actionable molecular alteration (FGFR2 fusions, IDH1/2, ARAF, KRAS, BRAF and FGF19) that is amenable for therapeutic targeting.

Citation

Daniela Sia, Bojan Losic, Agrin Moeini, Laia Cabellos, Ke Hao, Kate Revill, Dennis Bonal, Oriana Miltiadous, Zhongyang Zhang, Yujin Hoshida, Helena Cornella, Mireia Castillo-Martin, Roser Pinyol, Yumi Kasai, Sasan Roayaie, Swan N Thung, Josep Fuster, Myron E Schwartz, Samuel Waxman, Carlos Cordon-Cardo, Eric Schadt, Vincenzo Mazzaferro, Josep M Llovet. Massive parallel sequencing uncovers actionable FGFR2-PPHLN1 fusion and ARAF mutations in intrahepatic cholangiocarcinoma. Nature communications. 2015;6:6087

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25608663

View Full Text