Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Angiogenesis is spatially and temporally orchestrated by a myriad of signaling pathways, including the Notch signaling pathway. Here, we identified UXT as an evolutionarily conserved and developmentally expressed protein, indispensable for intersegmental vessel (ISV) formation in zebrafish. Deficiency of UXT in zebrafish embryos results in shorter ISVs, loss of tip cell behavior, and impairment of endothelial cell migration and division. Significantly, UXT attenuates the expression of the Notch-responsive genes in vitro and in vivo. Mechanistically, UXT binds to the promoters of the Notch signaling target genes and specifically interacts with the transactivation region domain of the Notch intracellular domain (NICD), impairing the interaction between NICD and the transcription factor RBP-Jκ endogenously. This prevents RBP-Jκ/CSL from activation and thus inhibits the consequent gene inductions. Furthermore, blockade of Notch signaling rescues the angiogenesis defect caused by UXT knockdown both in vitro and in vivo. Taken together, the data presented in this study characterize UXT as a novel repressor of Notch signaling, shedding new light on the molecular regulation of angiogenesis. © 2015. Published by The Company of Biologists Ltd.

Citation

Yi Zhou, Rui Ge, Rui Wang, Feng Liu, Yuefeng Huang, Heng Liu, Yan Hao, Qin Zhou, Chen Wang. UXT potentiates angiogenesis by attenuating Notch signaling. Development (Cambridge, England). 2015 Feb 15;142(4):774-86

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25617435

View Full Text