Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

FE65 and FE65L1 are cytoplasmic adaptor proteins that bind a variety of proteins, including the amyloid precursor protein, and that mediate the assembly of multimolecular complexes. We previously reported that FE65/FE65L1 double knockout (DKO) mice display disorganized laminin in meningeal fibroblasts and a cobblestone lissencephaly-like phenotype in the developing cortex. Here, we examined whether loss of FE65 and FE65L1 causes ocular and muscular deficits, 2 phenotypes that frequently accompany cobblestone lissencephaly. Eyes of FE65/FE65L1 DKO mice develop normally, but lens degeneration becomes apparent in young adult mice. Abnormal lens epithelial cell migration, widespread small vacuole formation, and increased laminin expression underneath lens capsules suggest impaired interaction between epithelial cells and capsular extracellular matrix in DKO lenses. Cortical cataracts develop in FE65L1 knockout (KO) mice aged 16 months or more but are absent in wild-type or FE65 KO mice. FE65 family KO mice show attenuated grip strength, and the nuclei of DKO muscle cells frequently locate in the middle of muscle fibers. These findings reveal that FE65 and FE65L1 are essential for the maintenance of lens transparency, and their loss produce phenotypes in brain, eye, and muscle that are comparable to the clinical features of congenital muscular dystrophies in humans. © FASEB.

Citation

Jaehong Suh, Juliet A Moncaster, Lirong Wang, Imran Hafeez, Joachim Herz, Rudolph E Tanzi, Lee E Goldstein, Suzanne Y Guénette. FE65 and FE65L1 amyloid precursor protein-binding protein compound null mice display adult-onset cataract and muscle weakness. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2015 Jun;29(6):2628-39

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25757569

View Full Text