Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Understanding how Munc18 proteins govern exocytosis is crucial because mutations of this protein cause severe secretion deficits in neuronal and immune cells. Munc18-2 has indispensable roles in the degranulation of mast cell, partly by binding and chaperoning a subset of syntaxin isoforms. However, the key syntaxin that, crucially, participates in the degranulation – whose levels and intracellular localization are regulated by Munc18-2 – remains unknown. Here, we demonstrate that double knockdown of Munc18-1 and Munc-2 in mast cells results in greatly reduced degranulation accompanied with strikingly compromised expression levels and localization of syntaxin-3. This phenotype is fully rescued by wild-type Munc18 proteins but not by the K46E, E59K and K46E/E59K mutants of Munc-18 domain 1, each of which exhibits completely abolished binding to 'closed' syntaxin-3. Furthermore, knockdown of syntaxin-3 strongly impairs degranulation. Collectively, our data argue that residues Lys46 and Glu59 of Munc18 proteins are indispensable for mediating the interaction between Munc18 and closed syntaxin-3, which is essential for degranulation by chaperoning syntaxin-3. Our results also indicate that the functional contribution of these residues differs between immune cell degranulation and neuronal secretion. © 2015. Published by The Company of Biologists Ltd.

Citation

Na-Ryum Bin, Chang Hun Jung, Byungjin Kim, Prashanth Chandrasegram, Ekaterina Turlova, Dan Zhu, Herbert Y Gaisano, Hong-Shuo Sun, Shuzo Sugita. Chaperoning of closed syntaxin-3 through Lys46 and Glu59 in domain 1 of Munc18 proteins is indispensable for mast cell exocytosis. Journal of cell science. 2015 May 15;128(10):1946-60

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25795302

View Full Text