Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Alpha-synuclein (α-Syn) is a major component of Lewy bodies, a pathological feature of Parkinson's and other neurodegenerative diseases collectively known as synucleinopathies. Among the possible mechanisms of α-Syn-mediated neurotoxicity is interference with cytoprotective pathways such as insulin signaling. Insulin receptor substrate (IRS)-1 is a docking protein linking IRs to downstream signaling pathways such as phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin (mTOR)/ribosomal protein S6 kinase (S6K)1; the latter exerts negative feedback control on insulin signaling, which is impaired in Alzheimer's disease. Our previous study found that α-Syn overexpression can inhibit protein phosphatase (PP)2A activity, which is involved in the protective mechanism of insulin signaling. In this study, we found an increase in IRS-1 phosphorylation at Ser636 and decrease in tyrosine phosphorylation, which accelerated IRS-1 turnover and reduced insulin-Akt signaling in α-Syn-overexpressing SK-N-SH cells and transgenic mice. The mTOR complex (C)1/S6K1 blocker rapamycin inhibited the phosphorylation of IRS-1 at Ser636 in cells overexpressing α-Syn, suggesting that mTORC1/S6K1 activation by α-Syn causes feedback inhibition of insulin signaling via suppression of IRS-1 function. α-Syn overexpression also inhibited PP2A activity, while the PP2A agonist C2 ceramide suppressed both S6K1 activation and IRS-1 Ser636 phosphorylation upon α-Syn overexpression. Thus, α-Syn overexpression negatively regulated IRS-1 via mTORC1/S6K1 signaling while activation of PP2A reverses this process. These results provide evidence for a link between α-Syn and IRS-1 that may represent a novel mechanism for α-Syn-associated pathogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

Citation

Shanshan Gao, Chunli Duan, Ge Gao, Xiaoming Wang, Hui Yang. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. The international journal of biochemistry & cell biology. 2015 Jul;64:25-33

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25813876

View Full Text