Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

BREVIPEDICELLUS (BP or KNAT1), a class-I KNOTTED1-like homeobox (KNOX) transcription factor in Arabidopsis thaliana, contributes to shaping the normal inflorescence architecture through negatively regulating other two class-I KNOX genes, KNAT2 and KNAT6. However, the molecular mechanism of BP-mediated transcription regulation remains unclear. In this study, we showed that BP directly interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) both in vitro and in vivo. Loss-of-function BRM mutants displayed inflorescence architecture defects, with clustered inflorescences, horizontally orientated pedicels, and short pedicels and internodes, a phenotype similar to the bp mutants. Furthermore, the transcript levels of KNAT2 and KNAT6 were elevated in brm-3, bp-9 and brm-3 bp-9 double mutants. Increased histone H3 lysine 4 tri-methylation (H3K4me3) levels were detected in brm-3, bp-9 and brm-3 bp-9 double mutants. Moreover, BRM and BP co-target to KNAT2 and KNAT6 genes, and BP is required for the binding of BRM to KNAT2 and KNAT6. Taken together, our results indicate that BP interacts with the chromatin remodeling factor BRM to regulate the expression of KNAT2 and KNAT6 in control of inflorescence architecture.

Citation

Minglei Zhao, Songguang Yang, Chia-Yang Chen, Chenlong Li, Wei Shan, Wangjin Lu, Yuhai Cui, Xuncheng Liu, Keqiang Wu. Arabidopsis BREVIPEDICELLUS interacts with the SWI2/SNF2 chromatin remodeling ATPase BRAHMA to regulate KNAT2 and KNAT6 expression in control of inflorescence architecture. PLoS genetics. 2015 Mar;11(3):e1005125

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25822547

View Full Text