The structure and function of photosystem II (PSII) are highly susceptible to photo-oxidative damage induced by high-fluence or fluctuating light. However, many of the mechanistic details of how PSII homeostasis is maintained under photoinhibitory light remain to be determined. We describe an analysis of the Arabidopsis thaliana gene At5g07020, which encodes an unannotated integral thylakoid membrane protein. Loss of the protein causes altered PSII function under high-irradiance light, and hence it is named 'Maintenance of PSII under High light 1' (MPH1). The MPH1 protein co-purifies with PSII core complexes and co-immunoprecipitates core proteins. Consistent with a role in PSII structure, PSII complexes (supercomplexes, dimers and monomers) of the mph1 mutant are less stable in plants subjected to photoinhibitory light. Accumulation of PSII core proteins is compromised under these conditions in the presence of translational inhibitors. This is consistent with the hypothesis that the mutant has enhanced PSII protein damage rather than defective repair. These data are consistent with the distribution of the MPH1 protein in grana and stroma thylakoids, and its interaction with PSII core complexes. Taken together, these results strongly suggest a role for MPH1 in the protection and/or stabilization of PSII under high-light stress in land plants. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Jun Liu, Robert L Last. A land plant-specific thylakoid membrane protein contributes to photosystem II maintenance in Arabidopsis thaliana. The Plant journal : for cell and molecular biology. 2015 Jun;82(5):731-43
PMID: 25846821
View Full Text