Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The signaling pathway leading to the endoplasmic reticulum (ER) stress responses has not been fully elucidated. Here we showed that glycogen synthase kinase-3β (GSK-3β)-dependent downregulation of γ-taxilin and nascent polypeptide-associated complex α-subunit (αNAC) mediates hypoxia-induced unfolded protein responses (UPRs) and the subsequent apoptotic and autophagic pathways. The degradation of γ-taxilin or αNAC was sufficient to initiate UPRs in normoxic cells. However, the ER stress signaling pathways initiated by γ-taxilin or αNAC were distinct, triggering different ER stress sensors and activating different downstream pathways. Hypoxia caused GSK-3β-dependent tau hyperphosphorylation and cleavage in neuronal cells, but γ-taxilin ablation induced tau hyperphosphorylation alone and αNAC ablation induced neither changes. Notably, downregulation of γ-taxilin and αNAC occurs in the brain of patients with Alzheimer's disease. These results suggest that GSK-3β-dependent downregulation of γ-taxilin and αNAC, which differently activate the UPRs, merge to regulate hypoxia-induced ER stress responses and provide a new insight into the pathogenesis of neurodegenerative diseases.

Citation

Y Hotokezaka, I Katayama, K van Leyen, T Nakamura. GSK-3β-dependent downregulation of γ-taxilin and αNAC merge to regulate ER stress responses. Cell death & disease. 2015;6:e1719

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 25880086

View Full Text