Correlation Engine 2.0
Clear Search sequence regions


  • aeromonas (1)
  • cell (2)
  • cellular (1)
  • child (1)
  • dna (3)
  • fibroblast (4)
  • GCAT (2)
  • gene (2)
  • human (4)
  • infant (1)
  • mitochondria (2)
  • over (1)
  • oxygen (3)
  • phenotypes (5)
  • protein human (1)
  • rna (3)
  • sequence analysis (2)
  • sequence analysis, dna (1)
  • SHMT (1)
  • SHMT2 (1)
  • species (2)
  • stem cells (2)
  • Sizes of these terms reflect their relevance to your search.

    Age-associated accumulation of somatic mutations in mitochondrial DNA (mtDNA) has been proposed to be responsible for the age-associated mitochondrial respiration defects found in elderly human subjects. We carried out reprogramming of human fibroblast lines derived from elderly subjects by generating their induced pluripotent stem cells (iPSCs), and examined another possibility, namely that these aging phenotypes are controlled not by mutations but by epigenetic regulation. Here, we show that reprogramming of elderly fibroblasts restores age-associated mitochondrial respiration defects, indicating that these aging phenotypes are reversible and are similar to differentiation phenotypes in that both are controlled by epigenetic regulation, not by mutations in either the nuclear or the mitochondrial genome. Microarray screening revealed that epigenetic downregulation of the nuclear-coded GCAT gene, which is involved in glycine production in mitochondria, is partly responsible for these aging phenotypes. Treatment of elderly fibroblasts with glycine effectively prevented the expression of these aging phenotypes.

    Citation

    Osamu Hashizume, Sakiko Ohnishi, Takayuki Mito, Akinori Shimizu, Kaori Ishikawa, Kaori Iashikawa, Kazuto Nakada, Manabu Soda, Hiroyuki Mano, Sumie Togayachi, Hiroyuki Miyoshi, Keisuke Okita, Jun-Ichi Hayashi. Epigenetic regulation of the nuclear-coded GCAT and SHMT2 genes confers human age-associated mitochondrial respiration defects. Scientific reports. 2015;5:10434

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 26000717

    View Full Text