Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Microtubule plus-end dynamics are regulated by a family of proteins called plus-end tracking proteins (+TIPs). We recently demonstrated that the transforming acidic coiled-coil (TACC) domain family member, TACC3, can function as a +TIP to regulate microtubule dynamics in Xenopus laevis embryonic cells. Although it has been previously reported that TACC3 is the only TACC family member that exists in Xenopus, our examination of its genome determined that Xenopus, like all other vertebrates, contains three TACC family members. Here, we investigate the localization and function of Xenopus TACC1, the founding member of the TACC family. We demonstrate that it can act as a +TIP to regulate microtubule dynamics, and that the conserved C-terminal TACC domain is required for its localization to plus-ends. We also show that, in Xenopus embryonic mesenchymal cells, TACC1 and TACC3 are each required for maintaining normal microtubule growth speed but exhibit some functional redundancy in the regulation of microtubule growth lifetime. Given the conservation of TACC1 in Xenopus and other vertebrates, we propose that Xenopus laevis is a useful system to investigate unexplored cell biological functions of TACC1 and other TACC family members in the regulation of microtubule dynamics. © 2015 Wiley Periodicals, Inc.

Citation

Christopher M Lucaj, Matthew F Evans, Belinda U Nwagbara, Patrick T Ebbert, Charlie C Baker, Joseph G Volk, Andrew F Francl, Sean P Ruvolo, Laura Anne Lowery. Xenopus TACC1 is a microtubule plus-end tracking protein that can regulate microtubule dynamics during embryonic development. Cytoskeleton (Hoboken, N.J.). 2015 May;72(5):225-34

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26012630

View Full Text