Correlation Engine 2.0
Clear Search sequence regions


  • mass (1)
  • xanthines (5)
  • Sizes of these terms reflect their relevance to your search.

    The natural xanthines caffeine, theobromine, and theophylline are of major commercial importance as flavor constituents in coffee, cocoa, tea, and a number of other beverages. However, their exploitation for authenticity, a requirement in these commodities that have a large origin-based price-range, by the standard method of isotope ratio monitoring by mass spectrometry (irm-MS) is limited. We have now developed a methodology that overcomes this deficit that exploits the power of isotopic quantitative (13)C nuclear magnetic resonance (NMR) spectrometry combined with chemical modification of the xanthines to enable the determination of positional intramolecular (13)C/(12)C ratios (δ(13)Ci) with high precision. However, only caffeine is amenable to analysis: theobromine and theophylline present substantial difficulties due to their poor solubility. However, their N-methylation to caffeine makes spectral acquisition feasible. The method is confirmed as robust, with good repeatability of the δ(13)Ci values in caffeine appropriate for isotope fractionation measurements at natural abundance. It is shown that there is negligible isotope fractionation during the chemical N-methylation procedure. Thus, the method preserves the original positional δ(13)Ci values. The method has been applied to measure the position-specific variation of the (13)C/(12)C distribution in caffeine. Not only is a clear difference between caffeine isolated from different sources observed, but theobromine from cocoa is found to show a (13)C pattern distinct from that of caffeine.

    Citation

    Didier G Diomande, Estelle Martineau, Alexis Gilbert, Pierrick Nun, Ariaki Murata, Keita Yamada, Naoharu Watanabe, Illa Tea, Richard J Robins, Naohiro Yoshida, Gérald S Remaud. Position-Specific Isotope Analysis of Xanthines: A (13)C Nuclear Magnetic Resonance Method to Determine the (13)C Intramolecular Composition at Natural Abundance. Analytical chemistry. 2015 Jul 7;87(13):6600-6

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 26067163

    View Full Text