Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Trp-cage is an artificial miniprotein that is small, stable, and fast folding due to concerted hydrophobic shielding of a Trp residue by polyproline helices. Simulations have extensively characterized Trp-cage; however, the interactions of Trp-cage with organic surfaces (e.g., membranes) and their effect on protein conformation are largely unknown. To better understand these interactions we utilized a combination of replica-exchange molecular dynamics (REMD) and metadynamics (MetaD), to investigate Trp-cage folding on self-assembled monolayers (SAMs). We found that, with REMD and MetaD, Trp-cage strongly binds to neutral CH3 surfaces (-25kT) and moderately adsorbs to anionic COOH interfaces (-7.6kT), with hydrophobic interactions driving CH3 adhesion and electrostatic attractions driving COOH adhesion. Similar to solid-state surfaces, SAMs facilitate a number of intermediate Trp-cage conformations between folded and unfolded states. Regarding Trp-cage's aromatic groups in neutral CH3 systems, Tyr becomes oriented parallel to the surface in order to maximize hydrophobic interactions while Trp remains caged perpendicular to the surface; however, Trp can reorient itself parallel to the interface as the miniprotein more closely binds to the surface. In contrast, Tyr and Trp are both repelled from COOH surfaces, though the Trp-cage still adheres to the anionic interface via Lys and its N-terminated Asn residue.

Citation

Zachary A Levine, Sean A Fischer, Joan-Emma Shea, Jim Pfaendtner. Trp-Cage Folding on Organic Surfaces. The journal of physical chemistry. B. 2015 Aug 20;119(33):10417-25

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26207727

View Full Text