Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Rare variants of phospholipase D3 (PLD3) have been identified as Alzheimer's disease (AD) susceptibility loci, whereas little is known about the potential role of common variants in the progression of AD. To examine the impact of genetic variations in PLD3 on neuroimaging phenotypes in a large non-demented population. A total of 261 normal cognition (NC) and 456 mild cognitive impairment (MCI) individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database are included in our analysis. Multiple linear regression models were applied to examine the association between four single-nucleotide polymorphisms (SNPs; rs7249146, rs4490097, rs12151243, and rs10407447) with the florbetapir retention on florbetapir 18F amyloid positron emission tomography (AV45-PET), the cerebral metabolic rate for glucose (CMRgl) on 18F-fluorodeoxyglucose PET (FDG-PET), and regional volume on magnetic resonance imaging (MRI) at baseline and in the cohort study. We did not detect any significant associations of PLD3 SNPs with florbetapir retention on AV45-PET. In the analysis of FDG-PET, rs10407447 was associated with the CMRgl in the left angular gyrus and bilateral posterior cingulate cortex in the MCI group. Regarding the MRI analysis, rs10407447 was also associated with bilateral inferior lateral ventricle and lateral ventricle volume in MCI group. The main findings of our study provide evidence that support the possible role of PLD3 common variants in influencing AD-related neuroimaging phenotypes. Nevertheless, further work is necessary to explain the functional mechanisms of differences and confirm the causal variants.

Citation

Chong Wang, Hui-Fu Wang, Meng-Shan Tan, Ying Liu, Teng Jiang, Dao-Qiang Zhang, Lan Tan, Jin-Tai Yu, Alzheimer’s Disease Neuroimaging Initiative. Impact of Common Variations in PLD3 on Neuroimaging Phenotypes in Non-demented Elders. Molecular neurobiology. 2016 Sep;53(7):4343-51


PMID: 26232066

View Full Text