Correlation Engine 2.0
Clear Search sequence regions


99m)Tc-Annexin A5 has been used as a molecular imaging probe for the visualization, characterization and measurement of apoptosis. In an effort to define the quantitative (99m)Tc-annexin A5 uptake criteria that best predict tumor response to treatment, we performed a systematic review and meta-analysis of the results of all clinical imaging trials found in the literature or publicly available databases. Included in this review were 17 clinical trials investigating quantitative (99m)Tc-annexin A5 (qAnx5) imaging using different parameters in cancer patients before and after the first course of chemotherapy and/or radiation therapy. Qualitative assessment of the clinical studies for diagnostic accuracy was performed using the QUADAS-2 criteria. Of these studies, five prospective single-center clinical trials (92 patients in total) were included in the meta-analysis after exclusion of one multicenter clinical trial due to heterogeneity. Pooled positive predictive values (PPV) and pooled negative predictive values (NPV) (with 95% CI) were calculated using Meta-Disc software version 1.4. Absolute quantification and/or relative quantification of (99m)Tc-annexin A5 uptake were performed at baseline and after the start of treatment. Various quantitative parameters have been used for the calculation of (99m)Tc-annexin A5 tumor uptake and delta (Δ) tumor changes post-treatment compared to baseline including: tumor-to-background ratio (TBR), ΔTBR, tumor-to-noise ratio, relative tumor ratio (TR), ΔTR, standardized tumor uptake ratio (STU), ΔSTU, maximum count per pixel within the tumor volume (Cmax), Cmax%, absolute ΔU and percentage (ΔU%), maximum ΔU counts, semiquantitative visual scoring, percent injected dose (%ID) and %ID/cm(3). Clinical trials investigating qAnx5 imaging have included patients with lung cancer, lymphoma, breast cancer, head and neck cancer and other less common tumor types. In two phase I/II single-center clinical trials, an increase of ≥25% in uptake following treatment was considered a significant threshold for an apoptotic tumor response (partial response, complete response). In three other phase I/II clinical trials, increases of ≥28%, ≥42% and ≥47% in uptake following treatment were found to be the mean cut-off levels in responders. In a phase II/III multicenter clinical trial, an increase of ≥23% in uptake following treatment was found to be the minimum cut-off level for a tumor response. In one clinical trial, no significant difference in (99m)Tc-annexin A5 uptake in terms of %ID was found in healthy tissues after chemotherapy compared to baseline. In two other clinical trials, intraobserver and interobserver measurements of (99m)Tc-annexin A5 tumor uptake were found to be reproducible (mean difference <5%, kappa =  0.90 and 0.82, respectively) and to be highly correlated with treatment outcome (Spearman r = 0.99, p < 0.0001). The meta-analysis demonstrated a pooled positive PPV of 100% (95% CI 92 - 100%) and a pooled NPV of 70% (95% CI 55 - 82%) for prediction of a tumor response after the first course of chemotherapy and/or radiotherapy in terms of ΔU%. In a symmetric sROC analysis, the AUC was 0.919 and the Q* index was 85.21 %. Quantitative (99m)Tc-annexin A5 imaging has been investigated in clinical trials for the assessment of apoptotic tumor responses. This meta-analysis showed a high pooled PPV and a moderate pooled NPV with ΔU cut-off values ranging between 20% and 30%. Standardization of quantification and harmonization of results are required for high-quality clinical research. A standardized uptake value score (SUV, ΔSUV) using quantitative SPECT/CT imaging may be a promising approach to the simple, reproducible and semiquantitative assessment of apoptotic tumor changes.

Citation

Tarik Z Belhocine, Francis G Blankenberg, Marina S Kartachova, Larry W Stitt, Jean-Luc Vanderheyden, Frank J P Hoebers, Christophe Van de Wiele. 99m)Tc-Annexin A5 quantification of apoptotic tumor response: a systematic review and meta-analysis of clinical imaging trials. European journal of nuclear medicine and molecular imaging. 2015 Dec;42(13):2083-97

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 26275392

View Full Text